On the Regularity over Positively Graded Algebras
نویسنده
چکیده
We study the relationship between the Tor-regularity and the local-regularity over a positively graded algebra defined over a field which coincide if the algebra is a standard graded polynomial ring. In this case both are characterizations of the so-called Castelnuovo–Mumford regularity. Moreover, we can characterize a standard graded polynomial ring as a K-algebra with extremal properties with respect to the Torand the localregularity. For modules of finite projective dimension we get a nice formula relating the two regularity notions. Interesting examples are given to help to understand the relationship between the Torand the local-regularity in general.
منابع مشابه
Strong Topological Regularity and Weak Regularity of Banach Algebras
In this article we study two different generalizations of von Neumann regularity, namely strong topological regularity and weak regularity, in the Banach algebra context. We show that both are hereditary properties and under certain assumptions, weak regularity implies strong topological regularity. Then we consider strong topological regularity of certain concrete algebras. Moreover we obtain ...
متن کاملArens Regularity and Weak Amenability of Certain Matrix Algebras
Motivated by an Arens regularity problem, we introduce the concepts of matrix Banach space and matrix Banach algebra. The notion of matrix normed space in the sense of Ruan is a special case of our matrix normed system. A matrix Banach algebra is a matrix Banach space with a completely contractive multiplication. We study the structure of matrix Banach spaces and matrix Banach algebras. Then we...
متن کاملCastelnuovo-mumford Regularity in Biprojective Spaces
We define the concept of regularity for bigraded modules over a bigraded polynomial ring. In this setting we prove analogs of some of the classical results on m-regularity for graded modules over polynomial algebras.
متن کاملArithmetic Deformation Theory of Lie Algebras
This paper is devoted to deformation theory of graded Lie algebras over Z or Zl with finite dimensional graded pieces. Such deformation problems naturally appear in number theory. In the first part of the paper, we use Schlessinger criteria for functors on Artinian local rings in order to obtain universal deformation rings for deformations of graded Lie algebras and their graded representations...
متن کاملArens regularity of triangular Banach algebras related to homomorphisms
In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach algebras. Then we study their Arens regularity as well as their topological centers . In this paper we first introduce a new multiplication on triangular Banach ...
متن کامل